The Central Alpine lower crustal migmatitic Gruf complex was exhumed in contact to the greenschist-grade Chiavenna ophiolite and gneissic Tambo nappe leading to a lateral gradient of ~ 70 °C/km within the ophiolite. The 14 km long, E-W striking subvertical contact now bridges metamorphic conditions of ~ 730 °C, 6.6 kbar in the migmatitic gneisses and ~ 500 °C, 4.2 kbar in the serpentinites and Tambo schists 2–4 km north of the contact. An obvious fault, mylonite or highly sheared rock that could accommodate the ~ 8.5 km vertical displacement is not present. Instead, more than half of the movement was accommodated in a 0.2–1.2 km thick orthogneiss of the Gruf complex that was heterogeneously molten. Discrete bands with high melt fractions (45–65%) now contain variably stretched enclaves of the adjacent MOR-derived amphibolite. In turn, the adjacent amphibolites exhibit tonalitic in-situ leucosomes and dikes i.e., were partially molten. The H2O necessary for fluid-assisted melting of the orthogneiss and amphibolites was likely derived from the tectonic contact metamorphism of the Chiavenna serpentinites, at the contact now in enstatite + olivine-grade. U–Pb dating of zircons shows that partial melting and diking occurred at 29.0–31.5 Ma, concomitant with the calc-alkaline Bergell batholith that intruded the Gruf. The major driving forces of exhumation were hence the strong regional North–South shortening in the Alpine collisional belt and the buoyancy provided by the Bergell magma. The fluids available through tectonic contact metamorphism led to self-enhanced magmatic weakening and concentration of movement in an orthogneiss, where melt-rich bands provided a low friction environment. Continuous heating of the originally greenschist Chiavenna ophiolite and Tambo gneisses + schists by the migmatitic Gruf complex during differential uplift explains the skewed temperature profile, with intensive contact heating in the ophiolite but little cooling in the portion of the now-exposed Gruf complex.
CITATION STYLE
Mintrone, M., Galli, A., & Schmidt, M. W. (2022). Exhumation of a migmatitic unit through self-enhanced magmatic weakening enabled by tectonic contact metamorphism (Gruf complex, Central European Alps). Contributions to Mineralogy and Petrology, 177(5). https://doi.org/10.1007/s00410-022-01919-4
Mendeley helps you to discover research relevant for your work.