Recurring floods have devastating consequences on the East Rapti Watershed (ERW), but effective mitigation/adaptation measures are lacking. This article aims at establishing a rainfall-runoff (RR) relationship; estimating depth and extent of inundation under climate change scenarios; assessing impacts on the socio-economy; and identifying and evaluating adaptation strategies in the ERW. Artificial Neural Network (ANN) was used to generate peak flows which were then entered into a hydraulic model to simulate inundation. Results were validated with field survey. The calibrated and validated RR and hydraulic models were fed with projected future climate (2021–2050) derived from multiple regional-climate-models to assess the changes in inundation. Results showed the peak discharge likely exceeds 10,500 m3/s at the ERW outlet in the extreme future flood scenario with corresponding inundation of 80 km2 and up to a depth of 11 m sweeping away over 1000 houses and 19 km2 of agricultural land in the critical areas. Constructing a 17 km long embankment in the critical areas along the right bank of the East Rapti River could reduce the flood spread by 35%, safeguarding 78% of the houses and saving 51% agricultural land compared with the scenarios without the embankment.
CITATION STYLE
Bhattarai, R., Bhattarai, U., Pandey, V. P., & Bhattarai, P. K. (2022). An artificial neural network-hydrodynamic coupled modeling approach to assess the impacts of floods under changing climate in the East Rapti Watershed, Nepal. Journal of Flood Risk Management, 15(4). https://doi.org/10.1111/jfr3.12852
Mendeley helps you to discover research relevant for your work.