This study examined the feasibility of nanoscale zero-valent iron (nZVI) for the single and combined removal of Cr(VI) and Cd(II) with or without ethylene diamine disuccinic acid (EDDS). The effects of pH and dissolved oxygen (DO) on the removal process were investigated. Results show that the single removal of either Cr(VI) or Cd(II) by nZVI was pH dependent, where the higher Cr(VI) removal was achieved under acidic conditions, whereas the higher Cd(II) removal was achieved under alkaline conditions. The presence of DO enhanced Cd(II) removal but inhibited Cr(VI) removal under alkaline conditions. In the co-existence of Cr(VI) and Cd(II), it was found that Cd(II) exerted insignificant effect on Cr(VI) removal, while the presence of Cr(VI) remarkably enhanced the Cd(II) removal. The addition of EDDS exhibited different influences on Cr(VI) and Cd(II) removal, which were associated with pH and DO. The EDDS enhanced Cr(VI) removal at pH 5.6-9.0 in the absence of DO, but decreased Cr(VI) removal at pH 9.0 in the presence of DO. For the removal of Cd(II) at pH 5.6-7.0, either facilitation or inhibition effect of EDDS was observed, depending on EDDS concentration and the co-existence of Cr(VI). However, Cd(II) removal was always significantly inhibited by EDDS at pH 9.0.
CITATION STYLE
Dong, H., Zeng, Y., Xie, Y., He, Q., Zhao, F., Wang, Y., & Zeng, G. (2017). Single and combined removal of Cr(VI) and Cd(II) by nanoscale zero-valent iron in the absence and presence of EDDS. Water Science and Technology, 76(5), 1261–1271. https://doi.org/10.2166/wst.2017.321
Mendeley helps you to discover research relevant for your work.