Sequential ionic and conformational signaling by calcium channels drives neuronal gene expression

86Citations
Citations of this article
214Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Voltage-gated CaV1.2 channels (L-type calcium channel α1C subunits) are critical mediators of transcription-dependent neural plasticity. Whether these channels signal via the influx of calcium ion (Ca2+), voltage-dependent conformational change (VΔC), or a combination of the two has thus far been equivocal. We fused CaV1.2 to a ligand-gated Ca2+-permeable channel, enabling independent control of localized Ca2+ and VΔC signals. This revealed an unexpected dual requirement: Ca2+ must first mobilize actin-bound Ca2+/calmodulin-dependent protein kinase II, freeing it for subsequent VΔC-mediated accumulation. Neither signal alone sufficed to activate transcription. Signal order was crucial: Efficiency peaked when Ca2+ preceded VΔC by 10 to 20 seconds. CaV1.2 VΔC synergistically augmented signaling by N-methyl-D-aspartate receptors. Furthermore, VΔC mistuning correlated with autistic symptoms in Timothy syndrome. Thus, nonionic VΔC signaling is vital to the function of CaV1.2 in synaptic and neuropsychiatric processes.

Cite

CITATION STYLE

APA

Li, B., Tadross, M. R., & Tsien, R. W. (2016). Sequential ionic and conformational signaling by calcium channels drives neuronal gene expression. Science, 351(6275), 863–867. https://doi.org/10.1126/science.aad3647

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free