Humans are sensitive to the statistical regularities in action sequences carried out by others. In the present eyetracking study, we investigated whether this sensitivity can support the prediction of upcoming actions when observing unfamiliar action sequences. In two between-subjects conditions, we examined whether observers would be more sensitive to statistical regularities in sequences performed by a human agent versus self-propelled ‘ghost’ events. Secondly, we investigated whether regularities are learned better when they are associated with contingent effects. Both implicit and explicit measures of learning were compared between agent and ghost conditions. Implicit learning was measured via predictive eye movements to upcoming actions or events, and explicit learning was measured via both uninstructed reproduction of the action sequences and verbal reports of the regularities. The findings revealed that participants, regardless of condition, readily learned the regularities and made correct predictive eye movements to upcoming events during online observation. However, different patterns of explicit-learning outcomes emerged following observation: Participants were most likely to re-create the sequence regularities and to verbally report them when they had observed an actor create a contingent effect. These results suggest that the shift from implicit predictions to explicit knowledge of what has been learned is facilitated when observers perceive another agent’s actions and when these actions cause effects. These findings are discussed with respect to the potential role of the motor system in modulating how statistical regularities are learned and used to modify behavior.
CITATION STYLE
Monroy, C. D., Gerson, S. A., & Hunnius, S. (2018). Translating visual information into action predictions: Statistical learning in action and nonaction contexts. Memory and Cognition, 46(4), 600–613. https://doi.org/10.3758/s13421-018-0788-6
Mendeley helps you to discover research relevant for your work.