We have designed and realized an efficient and operationally simple single-flask synthesis of imidodiphosphate-based Brønsted acids. The methodology proceedsviaconsecutive chloride substitutions of hexachlorobisphosphazonium salts, providing rapid access to imidodiphosphates (IDP), iminoimidodiphosphates (iIDP), and imidodiphosphorimidates (IDPi). These privileged acid catalysts feature a broad acidity range (pKafrom ∼11 to <2 in MeCN) and a readily tunable confined active site. Our approach enables access to previously elusive catalyst scaffolds with particularly high structural confinement, one of which catalyzes the first highly enantioselective (>95:5 er) sulfoxidation of methyln-propyl sulfide. Furthermore, the methodology delivers a novel, rationally designed super acidic catalyst motif, imidodiphosphorbis(iminosulfonylimino)imidate (IDPii), the extreme reactivity of which exceeds commonly employed super-Brønsted acids, such as trifluoromethanesulfonic acid. The unique reactivity of one such IDPii catalyst has been demonstrated in the first α-methylation of a silyl ketene acetal with methanol as the electrophilic alkylating reagent.
CITATION STYLE
Schwengers, S. A., De, C. K., Grossmann, O., Grimm, J. A. A., Sadlowski, N. R., Gerosa, G. G., & List, B. (2021). Unified Approach to Imidodiphosphate-Type Brønsted Acids with Tunable Confinement and Acidity. Journal of the American Chemical Society, 143(36), 14835–14844. https://doi.org/10.1021/jacs.1c07067
Mendeley helps you to discover research relevant for your work.