To understand the evolution of Fot1, a member of the pogo family widely dispersed in ascomycetes, we have performed a phylogenetic survey across the genus Fusarium divided into six sections. The taxonomic distribution of Fot1 is not homogeneous but patchy; it is prevalent in the Fusarium oxysporum complex, absent in closely related sections, and found in five species from the most distant section Martiella. Multiple copies of Fot1 were sequenced from each strain in which the element occurs. In three species, the Fot1 nucleotide sequence is 98% identical to that from F. oxysporum (Fox), whereas nucleotide divergence for host genes is markedly higher: 11% for partial nuclear 28S rDNA and up to 300% for the gene encoding nitrate reductase (nia). In two species, sequence divergence of Fot1-related elements relative to Fox ranged from 7% to 23% (16% average). Most of the sequence differences (82%) were C-to-T and G-to-A transitions. These mutations are distributed throughout the Fot1 sequences, although they tend to be concentrated in the middle portion of the elements. Analysis of the local sequence context of transitions revealed a hierarchy of site preferences. These characteristics are typical of the repeat-induced point mutation process, first discovered in Neurospora crassa. The spotty distribution of Fot1 elements among species together with the high degree of similarity between Fot1 sequences present in distant species strongly suggests a case of horizontal transfer.
CITATION STYLE
Daboussi, M. J., Davière, J. M., Graziani, S., & Langin, T. (2002). Evolution of the Fot1 transposons in the genus Fusarium: Discontinuous distribution and epigenetic inactivation. Molecular Biology and Evolution, 19(4), 510–520. https://doi.org/10.1093/oxfordjournals.molbev.a004106
Mendeley helps you to discover research relevant for your work.