Toward the design of ultrahigh-entropy alloys via mining six million texts

32Citations
Citations of this article
63Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

It has long been a norm that researchers extract knowledge from literature to design materials. However, the avalanche of publications makes the norm challenging to follow. Text mining (TM) is efficient in extracting information from corpora. Still, it cannot discover materials not present in the corpora, hindering its broader applications in exploring novel materials, such as high-entropy alloys (HEAs). Here we introduce a concept of “context similarity" for selecting chemical elements for HEAs, based on TM models that analyze the abstracts of 6.4 million papers. The method captures the similarity of chemical elements in the context used by scientists. It overcomes the limitations of TM and identifies the Cantor and Senkov HEAs. We demonstrate its screening capability for six- and seven-component lightweight HEAs by finding nearly 500 promising alloys out of 2.6 million candidates. The method thus brings an approach to the development of ultrahigh-entropy alloys and multicomponent materials.

Cite

CITATION STYLE

APA

Pei, Z., Yin, J., Liaw, P. K., & Raabe, D. (2023). Toward the design of ultrahigh-entropy alloys via mining six million texts. Nature Communications, 14(1). https://doi.org/10.1038/s41467-022-35766-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free