Given the rapid expansion in cloud computing in the past few years, there is a driving necessity of having cloud workloads running on a backend servers analyzed and characterized for performance and power consumption. In this research, we focus on Hadoop framework and Memcached, which are distributed model frameworks for processing large scale data intensive applications for different purposes. Hadoop is used for short jobs requiring low response time; it is a popular open source implementation of MapReduce for the analysis of large datasets, while Memcached is a high performance distributed memory object caching system that could speed up throughput of web applications by reducing the effect of bottlenecks on database load. In this paper, we characterize different workloads running on Hadoop framework and Memcached for different processor configurations and microarchitecture parameters. We implement an analytical estimation model for performance and power using different server processor microarchitecture parameters. The proposed analytical estimation model uses analytical method to scale different processor microarchitecture parameters such as CPI with respect to processor core frequency. We also propose an analytical model to estimate power consumption scaling for different processor core frequency. The combination of both performance and power consumption analytical models enables the estimation of performance per watt for different cloud benchmarks. The proposed estimation models are verified to estimate power and performance with less than 10% error deviation. © 2012 Issa and Figueira; licensee Springer.
CITATION STYLE
Issa, J., & Figueira, S. (2012). Hadoop and memcached: Performance and power characterization and analysis. Journal of Cloud Computing, 1(1), 1–20. https://doi.org/10.1186/2192-113X-1-10
Mendeley helps you to discover research relevant for your work.