Measles virus (MV) infection promotes maturation of dendritic cells (DC), but also interferes with DC functions, and MV renders the DC inhibitory for T cell proliferation. We now describe that MV infection triggers the release of type I IFN from monocyte-derived DC (Mo-DC) which contributes to DC maturation. There is no evidence that soluble mediators are released interfering with the stimulatory activity of uninfected DC. Since inhibition of allogeneic T cell proliferation was unaffected by a fusion inhibitory peptide (Z-fFG), MV infection of T cells did not contribute to inhibition. Allogeneic T cell proliferation depended on the percentage of DC expressing MV F/H glycoproteins within the DC population and their surface expression levels, was induced upon addition of UV-inactivated MV to a mixed lymphocyte reaction stimulated by lipopolysaccharide-matured DC, and was not induced by DC infected with a recombinant MV encoding the ectodomain of vesicular stomatitis virus G protein (MG/FV) instead of the MV glycoproteins. Similarly, DC infected with MV, but not with MG/FV inhibited mitogen-induced proliferation of T cells. Thus, a dominant inhibitory signal is delivered to T cells by the MV glycoproteins on the surface of DC overcoming positive signals by co-stimulatory molecules promoted by maturation factors released from infected DC.
CITATION STYLE
Klagge, I. M., Ter Meulen, V., & Schneider-Schaulies, S. (2000). Measles virus-induced promotion of dendritic cell maturation by soluble mediators does not overcome the immunosuppressive activity of viral glycoproteins on the cell surface. European Journal of Immunology, 30(10), 2741–2750. https://doi.org/10.1002/1521-4141(200010)30:10<2741::AID-IMMU2741>3.0.CO;2-N
Mendeley helps you to discover research relevant for your work.