Amata: An Annealing Mechanism for Adversarial Training Acceleration

12Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

Despite the empirical success in various domains, it has been revealed that deep neural networks are vulnerable to maliciously perturbed input data that much degrade their performance. This is known as adversarial attacks. To counter adversarial attacks, adversarial training formulated as a form of robust optimization has been demonstrated to be effective. However, conducting adversarial training brings much computational overhead compared with standard training. In order to reduce the computational cost, we propose an annealing mechanism, Amata, to reduce the overhead associated with adversarial training. The proposed Amata is provably convergent, well-motivated from the lens of optimal control theory and can be combined with existing acceleration methods to further enhance performance. It is demonstrated that on standard datasets, Amata can achieve similar or better robustness with around 1/3 to 1/2 the computational time compared with traditional methods. In addition, Amata can be incorporated into other adversarial training acceleration algorithms (e.g. YOPO, Free, Fast, and ATTA), which leads to further reduction in computational time on large-scale problems.

Cite

CITATION STYLE

APA

Ye, N., Li, Q., Zhou, X. Y., & Zhu, Z. (2021). Amata: An Annealing Mechanism for Adversarial Training Acceleration. In 35th AAAI Conference on Artificial Intelligence, AAAI 2021 (Vol. 12A, pp. 10691–10699). Association for the Advancement of Artificial Intelligence. https://doi.org/10.1609/aaai.v35i12.17278

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free