Ulcerative colitis (UC) is an inflammation-related disease involved in uncontrolled inflammation and oxidative stress and is characterized by high recurrence and relapse risk. As a rising star in gas medicine, methane owns the properties of anti-inflammation, antioxidation, and antiapoptosis. Based on the possible mechanism, we aimed to investigate the effect of methane on UC. Methane-rich saline (MRS) was introduced here, and UC was induced by acetic acid. All the C57BL/6 mice were allocated into groups as follows: control group, colitis model group, colitis treated with salazosulfapyridine (SASP) group, and colitis treated with MRS (1 or 10 ml/kg) groups. Tissue damage, the degree of inflammation, oxidative stress, and apoptosis were evaluated in the study, as well as the TLR4/NF-κB/MAPK and IL-10/JAK1/STAT3 signaling pathways for further exploration of the potential mechanism. The results showed that MRS (1) alleviated tissue damage caused by acetic acid, (2) controlled acetic acid-induced inflammation, (3) inhibited acetic acid-caused oxidative stress, (4) reduced colonic cell apoptosis due to acetic acid, (5) suppressed the TLR-4/NF-κB/MAPK signaling pathway, and (6) activated IL-10/JAK1/STAT3 anti-inflammatory response to improve the injury induced by acetic acid. We conclude that MRS has a protective effect on acetic acid-induced ulcerative colitis in mice via blocking the TLR4/NF-κB/MAPK signaling pathway and promoting the IL-10/JAK1/STAT3-mediated anti-inflammatory response.
CITATION STYLE
Wang, G., Xu, B., Shi, F., Du, M., Li, Y., Yu, T., & Chen, L. (2019). Protective effect of Methane-Rich saline on acetic Acid-Induced ulcerative colitis via blocking the TLR4/NF-κB/MAPK pathway and promoting IL-10/JAK1/STAT3-Mediated anti-inflammatory response. Oxidative Medicine and Cellular Longevity, 2019. https://doi.org/10.1155/2019/7850324
Mendeley helps you to discover research relevant for your work.