This study characterizes the microstructure and its associated crystallographic features of bulk maraging steels fabricated by selective laser melting (SLM) combined with a powder bed technique. The fabricated sample exhibited characteristic melt pools in which the regions had locally melted and rapidly solidified. A major part of these melt pools corresponded with the ferrite (α) matrix, which exhibited a lath martensite structure with a high density of dislocations. A number of fine retained austenite (γ) with a <001> orientation along the build direction was often localized around the melt pool boundaries. The orientation relationship of these fine γ grains with respect to the adjacent α grains in the martensite structure was (111)γ//(011)α and [-101]γ//[-1-11]α (Kurdjumov–Sachs orientation relationship). Using the obtained results, we inferred the microstructure development of maraging steels during the SLM process. The results depict that new and diverse high-strength materials can be used to develop industrial molds and dies.
CITATION STYLE
Takata, N., Nishida, R., Suzuki, A., Kobashi, M., & Kato, M. (2018). Crystallographic features of microstructure in maraging steel fabricated by selective laser melting. Metals, 8(6). https://doi.org/10.3390/met8060440
Mendeley helps you to discover research relevant for your work.