As an indispensable part of Internet of Things (IoT), wireless sensor networks (WSNs) are more and more widely used with the rapid development of IoT. The neighbor discovery protocols are the premise of communication between nodes and networking in energy-limited self-organizing wireless networks, and play an important role in WSNs. Because the node energy is limited, neighbor discovery must operate in an energy-efficient manner, that is, under the condition of a given energy budget, the neighbor discovery performance should be as good as possible, such that the discovery latency would be as small as possible and the discovered neighbor percentage as large as possible. The indirect neighbor discovery mainly uses the information of the neighbors that have been found by a pairwise discovery method to more efficiently make a re-planning of the discovery wake-up schedules of the original pairwise neighbor discovery, thereby improving the discovery energy efficiency. The current indirect neighbor discovery methods are mainly divided into two categories: one involves removing the inefficient active slots in the original discovery wake-up schedules, and the other involves adding some efficient active slots. However, the two categories of methods have their own limitations. The former does not consider that this removal operation destroys the integrity of the original discovery wake-up schedules and hence the possibility of discovering new neighbors is reduced, which adversely affects the discovered neighbor percentage. For the latter category, there are still inefficient active slots that were not removed in the re-planned wake-up schedules. The motivation of this paper is to combine the advantages of these two types of indirect neighbor discovery methods, that is, to combine the addition of efficient active slots and the removal of inefficient active slots. To achieve this goal, this paper proposes, for the first time, the concept of virtual nodes in neighbor discovery to maximize the integrity of the original wake-up schedules and achieve the goals of adding efficient active slots and removing inefficient active slots. Specifically, a virtual node is a collaborative group that is formed by nodes within a small range. The nodes in a collaborative group share responsibility for the activating task of one member node, and the combination of these nodes’ wake-up schedules forms the full wake-up schedule of a node that only uses a pairwise method. In addition, this paper proposes a set of efficient group management mechanisms, and the key steps affecting energy efficiency are analyzed theoretically to obtain the energy-optimal parameters. The extended simulation experiments in multiple scenarios show that, compared with other methods, our neighbor discovery protocol based on virtual nodes (VN-NDP) has a significant improvement in average discovery delay and discovered neighbor percentage performance at a given energy budget. Compared with the typical indirect neighbor discovery algorithm EQS, a neighbor discovery with extended quorum system, our proposed VN-NDP method reduces the average discovery delay by up to 10.03% and increases the discovered neighbor percentage by up to 18.35%.
CITATION STYLE
Zhang, Y., Wei, L., Guo, M., Wang, W., Sun, Y., Wang, J., & Chen, L. (2019). VN-NDP: A neighbor discovery protocol based on virtual nodes in mobile WSNs. Sensors (Switzerland), 19(21). https://doi.org/10.3390/s19214739
Mendeley helps you to discover research relevant for your work.