This study proposes an airborne behaviour monitoring methodology of ground vehicles based on a statistical learning approach with domain knowledge given by road map information. To monitor and track the moving ground target using unmanned aerial vehicle aboard a moving target indicator, an interactive multiple model (IMM) filter is firstly applied. The IMM filter consists of an on-road moving mode using a road-constrained filter and an off-road moving mode using a conventional filter. Mode probability is also calculated from the IMM filter, and it provides deviation of the vehicle from the road. Then, a novel hybrid algorithm for anomalous behaviour recognition is developed using a Gaussian process regression on velocity profile along the one-dimensionalised position of the vehicle, as well as the deviation of the vehicle. To verify the feasibility and benefits of the proposed approach, a numerical simulation is performed using realistic car trajectory data in a city traffic. © The Institution of Engineering and Technology 2013.
CITATION STYLE
Oh, H., Shin, H. S., Kim, S., Tsourdos, A., & White, B. A. (2013). Airborne behaviour monitoring using Gaussian processes with map information. IET Radar, Sonar and Navigation, 7(4), 393–400. https://doi.org/10.1049/iet-rsn.2012.0255
Mendeley helps you to discover research relevant for your work.