Automated interpretation of the coronary angioscopy with deep convolutional neural networks

14Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Background Coronary angioscopy (CAS) is a useful modality to assess atherosclerotic changes, but interpretation of the images requires expert knowledge. Deep convolutional neural networks (DCNN) can be used for diagnostic prediction and image synthesis. Methods 107 images from 47 patients, who underwent CAS in our hospital between 2014 and 2017, and 864 images, selected from 142 MEDLINE-indexed articles published between 2000 and 2019, were analysed. First, we developed a prediction model for the angioscopic findings. Next, we made a generative adversarial networks (GAN) model to simulate the CAS images. Finally, we tried to control the output images according to the angioscopic findings with conditional GAN architecture. Results For both yellow colour (YC) grade and neointimal coverage (NC) grade, we could observe strong correlations between the true grades and the predicted values (YC grade, average r=0.80±0.02, p<0.001; NC grade, average r=0.73±0.02, p<0.001). The binary classification model for the red thrombus yielded 0.71±0.03 F 1 -score and the area under the receiver operator characteristic curve was 0.91±0.02. The standard GAN model could generate realistic CAS images (average Inception score=3.57±0.06). GAN-based data augmentation improved the performance of the prediction models. In the conditional GAN model, there were significant correlations between given values and the expert's diagnosis in YC grade but not in NC grade. Conclusion DCNN is useful in both predictive and generative modelling that can help develop the diagnostic support system for CAS.

Cite

CITATION STYLE

APA

Miyoshi, T., Higaki, A., Kawakami, H., & Yamaguchi, O. (2020). Automated interpretation of the coronary angioscopy with deep convolutional neural networks. Open Heart, 7(1). https://doi.org/10.1136/openhrt-2019-001177

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free