To better understand TCR discrimination of multiple ligands, we have analyzed the crystal structures of two Hb peptide/I-Ek complexes that differ by only a single amino acid substitution at the P6 anchor position within the peptide (E73D). Detailed comparison of multiple independently determined structures at 1.9 Å resolution reveals that removal of a single buried methylene group can alter a critical portion of the TCR recognition surface. Significant variance was observed in the peptide P5-P8 main chain as well as a rotamer difference at LeuP8, ∼10 Å distal from the substitution. No significant variations were observed in the conformation of the two MHC class II molecules. The ligand alteration results in two peptide/MHC complexes that generate bulk T cell responses that are distinct and essentially nonoverlapping. For the Hb-specific T cell 3.L2, substitution reduces the potency of the ligand 1000-fold. Soluble 3.L2 TCR binds the two peptide/MHC complexes with similar affinity, although with faster kinetics. These results highlight the role of subtle variations in MHC Ag presentation on T cell activation and signaling.
CITATION STYLE
Kersh, G. J., Miley, M. J., Nelson, C. A., Grakoui, A., Horvath, S., Donermeyer, D. L., … Fremont, D. H. (2001). Structural and Functional Consequences of Altering a Peptide MHC Anchor Residue. The Journal of Immunology, 166(5), 3345–3354. https://doi.org/10.4049/jimmunol.166.5.3345
Mendeley helps you to discover research relevant for your work.