Dielectric characteristics of fast Li ion conducting garnet-type Li5+2: XLa3Nb2- xYxO12 (x = 0.25, 0.5 and 0.75)

49Citations
Citations of this article
41Readers
Mendeley users who have this article in their library.

Abstract

Here, we report the dielectric characteristics of Li-stuffed garnet-type Li5+2xLa3Nb2-xYxO12 (x = 0.25, 0.5 and 0.75) in the temperature range about -53 to 50 °C using AC impedance spectroscopy. All the investigated Li-stuffed garnet compounds were prepared, under the same condition, using conventional solid-state reaction at elevated temperature in air. The Nyquist plots show mainly bulk contribution to the total Li+ ion conductivity for Li5.5La3Nb1.75Y0.25O12 (Li5.5-Nb) and Li6La3Nb1.5Y0.5O12 (Li6-Nb), while both bulk and grain-boundary effects are visible in the case of Li6.5La3Nb1.25Y0.75O12 (Li6.5-Nb) phase at ∼-22 °C. Non-Debye relaxation process was observed in the modulus AC impedance plots. The dielectric loss tangent of Li5+2xLa3Nb2-xYxO12 are compared with that of the corresponding Ta analogue, Li5+2xLa3Ta2-xYxO12 and showed a decrease in peak intensity for the Nb-based garnet samples which may be attributed to a slight increase in their Li+ ion conductivity. The relative dielectric constant values were also found to be higher for the Ta member (>60 for Li5+2xLa3Ta2-xYxO12) than that of the corresponding Nb analogue (∼50 for Li5+2xLa3Nb2-xYxO12) at below room temperature. A long-range order Li+ ion migration pathway with relaxation time (τ0) 10-18-10-15 s and an activation energy of 0.59-0.40 eV was observed for the investigated Li5+2xLa3Nb2-xYxO12 garnets and is comparable to that of the corresponding Ta-based Li5+2xLa3Ta2-xYxO12 garnets.

Cite

CITATION STYLE

APA

Narayanan, S., Baral, A. K., & Thangadurai, V. (2016). Dielectric characteristics of fast Li ion conducting garnet-type Li5+2: XLa3Nb2- xYxO12 (x = 0.25, 0.5 and 0.75). Physical Chemistry Chemical Physics, 18(22), 15418–15426. https://doi.org/10.1039/c6cp02287a

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free