New process-based tools for predicting in-season soil nitrogen (N) levels has the potential to provide timely information for N management decisions for corn (Zea mays L.) production systems in the U.S. There is, however, little published data supporting the assumption that soil mineral N (SMN, NH4-N + NO3-N at 0–60 cm) is correlated with yield response at different vegetative growth stages. Moreover, the degree to which changes in SMN influence the risk of N losses is uncertain. Data from 32 site-years of field experiments in Illinois (2015–2018)—that included 12 combinations of N fertilizer rate, timing, and source—were used to evaluate the relationship between SMN concentration and grain yields across vegetative growth stages and estimate the exceedance probability of N losses. Overall, SMN across vegetative growth explained 46–61% of the variation in grain yield. Critical level of SMN that optimized yield decreased from 23.4 mg kg−1 at V5-V7 to 9.1 mg kg−1 at VT-R1 growth stage, but it was consistent, ranging from 14.7 to 16.3 mg kg−1, among sampling periods between V8 and V16 stages. While increasing SMN from deficiency (below critical levels) to sufficiency (at critical levels) increased yields by 22% (11.8 vs. 14.4 Mg ha−1), it also increased the probability of environmental N losses throughout vegetative growth, indicating a clear tradeoff between production and sustainability goals. These results help guide the development of sustainable in-season N management strategies by illustrating the importance of incorporating risks of environmental N losses when trying to reach optimum grain yield levels.
CITATION STYLE
Preza-Fontes, G., Nafziger, E. D., Christianson, L. E., & Pittelkow, C. M. (2020). Relationship of in-season soil nitrogen concentration with corn yield and potential nitrogen losses. Soil Science Society of America Journal, 84(4), 1296–1306. https://doi.org/10.1002/saj2.20117
Mendeley helps you to discover research relevant for your work.