Activity-dependent nuclear translocation and intranuclear distribution of NFATc in adult skeletal muscle fibers

152Citations
Citations of this article
54Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Transcription factor nuclear factor of activated T cells NFATc (NFATc1, NFAT2) may contribute to slow-twitch skeletal muscle fiber type-specific gene expression. Green fluorescence protein (GFP) or FLAG fusion proteins of either wild-type or constitutively active mutant NFATc [NFATc(S→A)] were expressed in cultured adult mouse skeletal muscle fibers from flexor digitorum brevis (predominantly fast-twitch). Unstimulated fibers expressing NFATc(S-→A) exhibited a distinct intranuclear pattern of NFATc foci. In unstimulated fibers expressing NFATc-GFP, fluorescence was localized at the sarcomeric z-lines and absent from nuclei. Electrical stimulation using activity patterns typical of slow-twitch muscle, either continuously at 10 Hz or in 5-s trains at 10 Hz every 50 s, caused cyclosporin A-sensitive appearance of fluorescent foci of NFATc-GFP in all nuclei. Fluorescence of nuclear foci increased during the first hour of stimulation and then remained constant during a second hour of stimulation. Kinase inhibitors and ionomycin caused appearance of nuclear foci of NFATc-GFP without electrical stimulation. Nuclear translocation of NFATc-GFP did not occur with either continuous 1 Hz stimulation or with the fast-twitch fiber activity pattern of 0.1-s trains at 50 Hz every 50 s. The stimulation pattern-dependent nuclear translocation of NFATc demonstrated here could thus contribute to fasttwitch to slow-twitch fiber type transformation.

Cite

CITATION STYLE

APA

Liu, Y., Cseresnyés, Z., Randall, W. R., & Schneider, M. F. (2001). Activity-dependent nuclear translocation and intranuclear distribution of NFATc in adult skeletal muscle fibers. Journal of Cell Biology, 155(1), 27–39. https://doi.org/10.1083/jcb.200103020

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free