Nitrogen (N) use efficiency in beef cattle is low (10–20%), resulting in large amounts of N excreted into the environment. The objective of this study was to evaluate the effects of chitosan inclusion and dietary crude protein (CP) level on nutrient intake and digestibility, ruminal fermen-tation, and N excretion in beef heifers. Eight Belgian Blue × Holstein Friesian cross beef heifers (752 ± 52 kg BW) were used in a 4 × 4 Latin square with a 2 × 2 factorial design. Factors were dietary CP concentration—high CP, 16% (HP) or low CP, 12% (LP)—and chitosan inclusion—0 or 10 g kg−1 dry matter (DM) offered at 50:50 forage concentrate ratio on a dry matter (DM) basis. Apparent total tract digestibility of DM, organic matter (OM), and CP were reduced (p < 0.001) with chitosan inclu-sion, whereas offering the HP diets increased apparent total tract digestibility of CP (p < 0.001). Offering the HP diets increased urinary N excretion (p < 0.001), while chitosan inclusion increased N excretion in faeces (p < 0.05). Ruminal pH was increased with chitosan inclusion (p < 0.01). There was a CP × chitosan interaction for rumen ammonia (NH3) concentrations (p < 0.05). Including chi-tosan in the HP diets increased ruminal NH3 concentration while having no effect on the LP diets. Urinary N excretion was increased with increased levels of CP, but chitosan inclusion increased the quantity of N excreted in the faeces.
CITATION STYLE
Kirwan, S. F., Pierce, K. M., Serra, E., McDonald, M., Rajauria, G., & Boland, T. M. (2021). Effect of chitosan inclusion and dietary crude protein level on nutrient intake and digestibility, ruminal fermentation, and n excretion in beef heifers offered a grass silage based diet. Animals, 11(3), 1–14. https://doi.org/10.3390/ani11030771
Mendeley helps you to discover research relevant for your work.