We investigated spatial perception of virtual images that were produced by convex and plane mirrors. In Experiment 1, 36 subjects reproduced both the perceived size and the perceived distance of virtual images for five targets that had been placed at a real distance of 10 or 20 m. In Experiment 2, 30 subjects verbally judged both the perceived size and the perceived distance of virtual images for five targets that were placed at each of five real distances of 2.5-45 m. In both experiments, the subjects received objective-size and objective-distance instructions. The results were that (1) size constancy was attained for a distance of up to 45 m, (2) distance was readily discriminated within this distance range, although virtual images produced by the mirror of strong curvature were judged to be farther away than those produced by the mirrors of less curvature, and (3) the ratio of perceived size to perceived distance was described as a power function of visual angle, and the ratio for the convex mirror was larger than that for the plane mirror. We compared the taking-into-account model and the direct perception model on the basis of a correlation analysis for proximal, virtual, and real levels of the stimuli. The taking-into-account model, which assumes that visual angle is transformed into perceived size by taking perceived distance into account, was supported by an analysis for the proximal level of stimuli. The direct perception model, which assumes that there is no inferential process between perceived size and perceived distance, was partially supported by an analysis for the distal level of the stimuli.
CITATION STYLE
Higashiyama, A., & Shimono, K. (2004). Mirror vision: Perceived size and perceived distance of virtual images. Perception and Psychophysics, 66(4), 679–691. https://doi.org/10.3758/BF03194911
Mendeley helps you to discover research relevant for your work.