High-Power and Short-Duration Ablation for Pulmonary Vein Isolation: Biophysical Characterization

236Citations
Citations of this article
104Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Objectives: This study sought to examine the biophysical properties of high-power and short-duration (HP-SD) radiofrequency ablation for pulmonary vein isolation. Background: Pulmonary vein isolation is the cornerstone of atrial fibrillation ablation. However, pulmonary vein reconnection is frequent and is often the result of catheter instability, tissue edema, and a reversible nontransmural injury. We postulated that HP-SD ablation increases lesion-to-lesion uniformity and transmurality. Methods: This study included 20 swine and a novel open-irrigated ablation catheter with a thermocouple system able to record temperature at the catheter-tissue interface (QDOT Micro Catheter). Step 1 compared 3 HP-SD ablation settings: 90 W/4 s, 90 W/6 s, and 70 W/8 s in a thigh muscle preparation. Ablation at 90 W/4 s was identified as the best compromise between lesion size and safety parameters, with no steam-pop or char. In step 2, a total of 174 single ablation applications were performed in the beating heart and resulted in 3 (1.7%) steam-pops, all occurring at catheter-tissue interface temperature ≥85°C. Additional 233 applications at 90 W/4 s and temperature limit of 65°C were applied without steam-pop. Step 3 compared the presence of gaps and lesion transmurality in atrial lines and pulmonary vein isolation between HP-SD (90 W/4 s, T ≤65°C) and standard (25 W/20 s) ablation. Results: HP-SD ablation resulted in 100% contiguous lines with all transmural lesions, whereas standard ablation had linear gaps in 25% and partial thickness lesions in 29%. Ablation with HP-SD produced wider lesions (6.02 ± 0.2 mm vs. 4.43 ± 1.0 mm; p = 0.003) at similar depth (3.58 ± 0.3 mm vs. 3.53 ± 0.6 mm; p = 0.81) and improved lesion-to-lesion uniformity with comparable safety end points. Conclusions: In a preclinical model, HP-SD ablation (90 W/4 s, T ≤65°C) produced an improved lesion-to-lesion uniformity, linear contiguity, and transmurality at a similar safety profile of conventional ablation.

Cite

CITATION STYLE

APA

Leshem, E., Zilberman, I., Tschabrunn, C. M., Barkagan, M., Contreras-Valdes, F. M., Govari, A., & Anter, E. (2018). High-Power and Short-Duration Ablation for Pulmonary Vein Isolation: Biophysical Characterization. JACC: Clinical Electrophysiology, 4(4), 467–479. https://doi.org/10.1016/j.jacep.2017.11.018

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free