In this study, we investigated the luminous properties of undoped cesium iodide (CsI) and Na-doped CsI (CsI:Na) films deposited by thermal vacuum evaporation and treated with different substrate temperatures, post-annealing temperatures, and deposition rates. The quality of the deposited films was evaluated by their XRD pattern, SEM cross-section/surface morphologies and UV/X-ray luminescence, the spectra of which were used to derive the luminescence mechanism of the deposited films. The 310 nm luminescence demonstrates that the exciting light arises from the electron-hole recombination through the self-trapped exciton (STE) process, which is characteristic of the host polycrystalline CsI. The broad-band luminescence from ~400 to 450 nm demonstrates the other electron-hole recombination between the new energy states created by doping Na in the forbidden gap of CsI. When we deposited higher quality films at a substrate temperature of 200 °C, the undoped CsI films showed preferred crystal orientation at (200), and the CsI:Na films co-evaporated by 1 wt.% NaI at (310) and had the highest UV/X-ray luminescence.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Hsu, J. C., & Ma, Y. S. (2019). Luminescence of CsI and CsI: Na films under LED and X-ray excitation. Coatings, 9(11). https://doi.org/10.3390/coatings9110751