The study of human microRNAs is seriously hampered by the lack of proper tools allowing genome-wide identification of miRNA targets. We performed Ribonucleoprotein ImmunoPrecipitation-gene Chip (RIP-Chip) using antibodies against wild-type human Ago2 in untreated Hodgkin lymphoma (HL) cell lines. Ten to thirty percent of the gene transcripts from the genome were enriched in the Ago2-IP fraction of untreated cells, representing the HL miRNA-targetome. In silico analysis indicated that ~40% of these gene transcripts represent targets of the abundantly co-expressed miRNAs. To identify targets of miR-17/20/93/106, RIP-Chip with anti-miR-17/20/93/106 treated cells was performed and 1189 gene transcripts were identified. These genes were analyzed for miR-17/20/93/106 target sites in the 5′-UTRs, coding regions and 3′-UTRs. Fifty-one percent of them had miR-17/20/93/106 target sites in the 3′-UTR while 19% of them were predicted miR-17/20/93/106 targets by TargetScan. Luciferase reporter assay confirmed targeting of miR-17/20/93/106 to the 3′-UTRs of 8 out of 10 genes. In conclusion, we report a method which can establish the miRNA-targetome in untreated human cells and identify miRNA specific targets in a high throughput manner. This approach is applicable to identify miRNA targets in any human tissue sample or purified cell population in an unbiased and physiologically relevant manner. © The Author(s) 2009. Published by Oxford University Press.
CITATION STYLE
Tan, L. P., Seinen, E., Duns, G., De jong, D., Sibon, O. C. M., Poppema, S., … den Berg, A. van. (2009). A high throughput experimental approach to identify miRNA targets in human cells. Nucleic Acids Research, 37(20). https://doi.org/10.1093/nar/gkp715
Mendeley helps you to discover research relevant for your work.