Thin water films and particle morphology evolution in nanocrystalline MgO

19Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

A key question in the field of ceramics and catalysis is how and to what extent residual water in the reactive environment of a metal oxide particle powder affects particle coarsening and morphology. With X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM), we investigated annealing-induced morphology changes on powders of MgO nanocubes in different gaseous H2O environments. The use of such a model system for particle powders enabled us to describe how adsorbed water that originates from short exposure to air determines the evolution of MgO grain size, morphology, and microstructure. While cubic nanoparticles with a predominant abundance of (100) surface planes retain their shape after annealing to T = 1173 K under continuous pumping with a base pressure of water p(H2O) = 10−5 mbar, higher water partial pressures promote mass transport on the surfaces and across interfaces of such particle systems. This leads to substantial growth and intergrowth of particles and simultaneously favors the formation of step edges and shallow protrusions on terraces. The mass transfer is promoted by thin films of water providing a two-dimensional solvent for Mg2+ ion hydration. In addition, we obtained direct evidence for hydroxylation-induced stabilization of (110) faces and step edges of the grain surfaces.

Cite

CITATION STYLE

APA

Thomele, D., Gheisi, A. R., Niedermaier, M., Elsässer, M. S., Bernardi, J., Grönbeck, H., & Diwald, O. (2018). Thin water films and particle morphology evolution in nanocrystalline MgO. Journal of the American Ceramic Society, 101(11), 4994–5003. https://doi.org/10.1111/jace.15775

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free