We have developed a novel dual enzyme chemistry called rhAmp® SNP genotyping based on RNase H2-dependent PCR (rhPCR) that provides high signal and specificity for SNP analysis. rhAmp SNP genotyping combines a unique two-enzyme system with 3’ end blocked DNA-RNA hybrid primers to interrogate SNP loci. Activation of the blocked primers occurs upon hybridization to its perfectly matched target, which eliminates or greatly reduces primer dimers. A thermostable hot-start RNase H2 cleaves the primer immediately 5’ of the ribose sugar, releasing the blocking group and allowing primer extension. PCR specificity is further improved with the use of a mutant Taq DNA polymerase, resulting in improved allelic discrimination. Signal generation is obtained using a universal reporter system which requires only two reporter probes for any bi-allelic SNP. 1000 randomly selected SNPs were chosen to validate the 95% design rate of the design pipeline. A subsampling of 130 human SNP targets was tested and achieved a 98% call rate, and 99% call accuracy. rhAmp SNP genotyping assays are compatible with various qPCR instruments including QuantStudioTM 7 Flex, CFX384TM, IntelliQube®, and Biomark HDTM. In comparison to TaqMan®, rhAmp SNP genotyping assays show higher signal (Rn) and greater cluster separation, resulting in more reliable SNP genotyping performance. The rhAmp SNP genotyping solution is suited for high-throughput SNP genotyping applications in humans and plants.
CITATION STYLE
Beltz, K., Tsang, D., Wang, J., Rose, S., Bao, Y., Wang, Y., … Chen, C. (2018). A High-Performing and Cost-Effective SNP Genotyping Method Using rhPCR and Universal Reporters. Advances in Bioscience and Biotechnology, 09(09), 497–512. https://doi.org/10.4236/abb.2018.99034
Mendeley helps you to discover research relevant for your work.