Consistent searches for SMEFT effects in non-resonant dilepton events

14Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Employing the framework of the Standard Model Effective Field Theory, we perform a detailed reinterpretation of measurements of the Weinberg angle in dilepton production as a search for new-physics effects. We truncate our signal prediction at order 1/Λ2, where Λ denotes the new-physics mass scale, and introduce a theory error to account for unknown contributions of order 1/Λ4. Two linear combinations of four-fermion operators with distinct angular behavior contribute to dilepton production with growing impact at high energies. We define suitable angular observables and derive bounds on those two linear combinations using data from the Tevatron and the LHC. We find that the current data is able to constrain interesting regions of parameter space, with important contributions at lower cutoff scales from the Tevatron, and that the future LHC data will eventually be able to simultaneously constrain both independent linear combinations which contribute to dilepton production.

Cite

CITATION STYLE

APA

Alte, S., König, M., & Shepherd, W. (2019). Consistent searches for SMEFT effects in non-resonant dilepton events. Journal of High Energy Physics, 2019(7). https://doi.org/10.1007/JHEP07(2019)144

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free