The sol-gel method was employed to prepare nano CoFe2O4 and silver-substituted CoFe2O4 nanohybrids (CoAgxFe2-xO4, x = 0, 0.1, 0.2, 0.3, 0.4) utilizing Moringa oleifera gum as biofuel. The morphology, size, shape, magnetic, optical, and functional groups of the crystallites were determined using various techniques such as UV-visible, Fourier transform infrared, X-ray diffraction, Rietveld, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry, and photoluminescence. The produced nanoferrite has a spherical shape with cubic spinal structures. The optical properties were investigated in two different bands in the photoluminescence emission spectra at 469 and 493 nm. Saturation magnetization (Ms) and coercivity (Hc) decrease as the Ag content increases significantly. Furthermore, antibacterial (Gram-positive bacteria bacterial strains, Bacillus subtilis and Staphylococcus aureus, and Gram-negative bacterial strains, Pseudomonas aeruginosa, and Escherichia coli), antibiofilm activity (E. coli), and antioxidant (DPPH) activities were investigated. The substantial increase in the silver content offers a constructive impact on studied biomedical activities. These findings encourage additional research into the use of hybrid nanoparticles (an amalgamation of ferrite and a noble metal) in biomedical and pharmaceutical applications.
CITATION STYLE
Tamboli, Q. Y., Patange, S. M., Mohanta, Y. K., Patil, A. D., Ali, R., Bushnak, I., & Zakde, K. (2023). Moringa oleifera Gum-Assisted Synthesis and Characterization of CoAgxFe2-xO4: Insight into Structural, Magnetic, Optical, and Biomedical Properties. ACS Omega. https://doi.org/10.1021/acsomega.3c06578
Mendeley helps you to discover research relevant for your work.