Identification and localization of two membrane-bound esterases from Escherichia coli

20Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Hydrolytic activities of isolated membrane fractions of E. coli against chromogenic substrates, p-nitrophenyl ester and β-naphthyl ester derivatives of N-substituted amino acids, were investigated by spectrophotometric and electrophoretic methods. Although detergents were absolutely necessary for the solubilization of enzymes, the amount of solubilized activities was increased by adding salt, such as NaCl or KCl. Two esterases were identified and separated by PAGE and by chromatography of the solubilized proteins in the presence of detergent. One hydrolyzed the alanine derivatives preferentially, whereas the other was mainly active on phenylalanine derivatives. Only the first was inactivated by diisopropyl fluorophosphate, a serine hydrolase inhibitor. Whereas the chymotrypsin-like enzyme was equally distributed between the inner and the outer membrane, the alanine activity was only detected in the inner membrane. They were both resistant to extraction with high salt concentrations, indicating their integral association with membranes. A study of the accessibility of these enzymes to their substrate in membrane vesicles with known polarity suggests that both alanine and phenylalanine activities are localized near the external surface of the cytoplasmic (inner) membrane. However, the phenylalanine activity (chymotrypsin-like enzyme) appears to be deeply buried inside the outer membrane. Because of its insensitivity to diisopropyl fluorophosphate, this last esterase seems to be distinct from the previously isolated periplasmic endopeptidase, protease I, which is also a chymotrypsin-like enzyme.

Cite

CITATION STYLE

APA

Pacaud, M. (1982). Identification and localization of two membrane-bound esterases from Escherichia coli. Journal of Bacteriology, 149(1), 6–14. https://doi.org/10.1128/jb.149.1.6-14.1982

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free