Combining Fe nanoparticles and pyrrole-type Fe-N4 sites on less-oxygenated carbon supports for electrochemical CO2 reduction

35Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A great challenge for electrochemical CO2 reduction is to improve energy efficiency, which requires reducing overpotential while increasing product Faraday efficiency. Here, we designedly synthesize a hybrid electrocatalyst consisting of Fe nanoparticles, pyrrole-type Fe-N4 sites and less-oxygenated carbon supports, which exhibits a remarkable CO Faraday efficiency above 99% at an ultralow overpotential of 21 mV, reaching the highest cathode energy efficiency of 97.1% to date. The catalyst also can afford a CO selectivity nearly 100% with a high cathode energy efficiency (>90%) at least 100 h. The combined results of control experiments, in situ characterizations and theoretical calculations demonstrate that introducing Fe nanoparticles can reduce the overpotential by accelerating the proton transfer from CO2 to *COOH and lowering the free energy for *COOH formation, constructing pyrrole-type Fe-N4 sites and limiting oxygen species on carbon supports can increase CO Faraday efficiency through inhibiting the H2 evolution, thus achieving energy-efficient electrochemical CO2 reduction to CO.

Cite

CITATION STYLE

APA

Wang, C., Wang, X., Ren, H., Zhang, Y., Zhou, X., Wang, J., … Li, W. (2023). Combining Fe nanoparticles and pyrrole-type Fe-N4 sites on less-oxygenated carbon supports for electrochemical CO2 reduction. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-40667-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free