Many advances have been achieved in the study of collective behavior of animal groups and human beings. Markovian order is a significant property in collective behavior, which reveals the inter-agent interaction strategy of the system. In this study, we propose a method using the time-series data of collective behavior to determine the optimal maximum Markov order of time-series motion data so as to reflect the maximum memory capacity of the interacting network. Our method combines a time-delayed causal inference algorithm and a multi-order graphical model. We apply the method to the data of pigeon flocks, dogs, and a group of midges to determine their optimal maximum order for validation and construct high-order De Bruijn graphs as a stochastic model to describe their interacting relationships. Most temporal network data of animal movements can be effectively analyzed by our method, which may provide a practical and promising solution to detection of the optimal maximum Markovian order of collective behavior.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Zhang, Y., Wu, G., Liu, X., Yu, W., & Chen, D. (2020). Maximum Markovian order detection for collective behavior. Chaos, 30(8). https://doi.org/10.1063/5.0008397