Increased IL-23p19 expression in multiple sclerosis lesions and its induction in microglia

135Citations
Citations of this article
89Readers
Mendeley users who have this article in their library.

Abstract

IL-12 has long been considered important in the pathogenesis of multiple sclerosis. However, evidence from recent studies strongly supports the critical role of IL-12-related proinflammatory cytokine IL-23, but not IL-12, in the development of experimental autoimmune encephalomyelitis (EAE), an animal model of this disease. The role of IL-23 in the CNS immunity of multiple sclerosis patients has not been elucidated; nor is it known whether human microglia produce this cytokine. In this study we investigated the expression of IL-23p19 and p40, with its key subunit p19 as the focus, in histologically characterized CNS specimens from multiple sclerosis and control cases using in situ hybridization and immunohistochemistry. A significant increase in mRNA expression and protein production of both subunits of IL-23 was found in lesion tissues compared with non-lesion tissues. Double staining showed that activated macrophages/microglia were an important source of IL-23p19 in active and chronic active multiple sclerosis lesions. We also detected IL-23p19 expression in mature dendritic cells which were preferentially located in the perivascular cuff of active lesions. The finding that human microglia produce IL-23 was further confirmed by the inducible production of IL-23p19 and p40 in cultured human microglia in vitro upon different Toll-like receptor stimulations. Taken together, these findings on the expression of IL-23p19 in multiple sclerosis lesions may lead to a better understanding of the events culminating in human multiple sclerosis. © The Author (2006). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved.

Author supplied keywords

Cite

CITATION STYLE

APA

Li, Y., Chu, N., Hu, A., Gran, B., Rostami, A., & Zhang, G. X. (2007). Increased IL-23p19 expression in multiple sclerosis lesions and its induction in microglia. Brain, 130(2), 490–501. https://doi.org/10.1093/brain/awl273

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free