Controls on the formation of lunar multiring basins

22Citations
Citations of this article
25Readers
Mendeley users who have this article in their library.

Abstract

Multiring basins dominate the crustal structure, tectonics, and stratigraphy of the Moon. Understanding how these basins form is crucial for understanding the evolution of ancient planetary crusts. To understand how preimpact thermal structure and crustal thickness affect the formation of multiring basins, we simulate the formation of lunar basins and their rings under a range of target and impactor conditions. We find that ring locations, spacing, and offsets are sensitive to lunar thermal gradient (strength of the lithosphere), temperature of the deep lunar mantle (strength of the asthenosphere), and preimpact crustal thickness. We also explore the effect of impactor size on the formation of basin rings and reproduce the observed transition from peak-ring basins to multiring basins and reproduced many observed aspects of ring spacing and location. Our results are in broad agreement with the ring tectonic theory for the formation of basin rings and also suggest that ring tectonic theory applies to the rim scarp of smaller peak-ring basins.

Cite

CITATION STYLE

APA

Johnson, B. C., Andrews-Hanna, J. C., Collins, G. S., Freed, A. M., Melosh, H. J., & Zuber, M. T. (2018). Controls on the formation of lunar multiring basins. Journal of Geophysical Research: Planets, 123(11), 3035–3050. https://doi.org/10.1029/2018JE005765

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free