Ommastrephid squids are short-lived ecological opportunists and their recruitment is largely driven by the surrounding environment. While recent studies suggest that recruitment variability in several squid species can be partially explained by environmental variability derived from synoptic oceanographic data, assessment of ommastrephid stocks using environmental variability is rare. In thisstudy, we modified asurplus production model to incorporate environmental variability into the assessment of threeommastrephid squids (Ommastrephes bartramii in the northwest Pacific, Illex argentinus in the southwest Atlantic and Dosidicus gigas in the southwest Pacific). We assumed that the key environmental variables—suitable sea surface temperature on spawning grounds during the spawning seasons and feeding grounds during the feeding seasons—have effects on the carrying capacity and the instantaneous population growth rate, respectively, in the surplus production model. For each squid stock, the assessment model with environmental variability had the highest fitting accuracy and the lowest mean squared error and coefficient of variation, and the management reference points based on the optimal model were more precautionary. This study advances our understanding of the interactions between the environment and ommastrephid squid population dynamics and can therefore improve the management of these commercially valuable stocks with a short life cycle.
CITATION STYLE
Wang, J., Chen, X., Tanaka, K., Cao, J., & Chen, Y. (2017). Environmental influences on commercial oceanic ommastrephid squids: a stock assessment perspective. Scientia Marina, 81(1), 37. https://doi.org/10.3989/scimar.04497.25b
Mendeley helps you to discover research relevant for your work.