Biomass-Derived Carbon-Based Electrodes for Electrochemical Sensing: A Review

13Citations
Citations of this article
65Readers
Mendeley users who have this article in their library.

Abstract

The diverse composition of biomass waste, with its varied chemical compounds of origin, holds substantial potential in developing low-cost carbon-based materials for electrochemical sensing applications across a wide range of compounds, including pharmaceuticals, dyes, and heavy metals. This review highlights the latest developments and explores the potential of these sustainable electrodes in electrochemical sensing. Using biomass sources, these electrodes offer a renewable and cost-effective route to fabricate carbon-based sensors. The carbonization process yields highly porous materials with large surface areas, providing a wide variety of functional groups and abundant active sites for analyte adsorption, thereby enhancing sensor sensitivity. The review classifies, summarizes, and analyses different treatments and synthesis of biomass-derived carbon materials from different sources, such as herbaceous, wood, animal and human wastes, and aquatic and industrial waste, used for the construction of electrochemical sensors over the last five years. Moreover, this review highlights various aspects including the source, synthesis parameters, strategies for improving their sensing activity, morphology, structure, and functional group contributions. Overall, this comprehensive review sheds light on the immense potential of biomass-derived carbon-based electrodes, encouraging further research to optimize their properties and advance their integration into practical electrochemical sensing devices.

Cite

CITATION STYLE

APA

Onfray, C., & Thiam, A. (2023, September 1). Biomass-Derived Carbon-Based Electrodes for Electrochemical Sensing: A Review. Micromachines. Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/mi14091688

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free