Given that expression of c-Myc is up-regulated in many human malignancies, targeted inactivation of this oncoprotein is a potentially effective strategy for cancer treatment The ubiquitin-proteasome pathway of protein degradation is highly specific and can be engineered to achieve the elimination of undesirable proteins such as oncogene products. We have now generated a fusion protein (designated Max-U) that is composed both of Max, which forms a heterodimer with c-Myc, and of CHIP, which is a U box-type ubiquitin ligase (E3). Max-U physically interacted with c-Myc in transfected cells and promoted the ubiquitylation of c-Myc in vitro. It also reduced the stability of c-Myc in vivo, resulting in suppression of transcriptional activity dependent on c-Myc. Expression of Max-U reduced both the abundance of endogenous c-Myc in and the proliferation rate of a Burkitt lymphoma cell line. Furthermore, expression of Max-U but not that of a catalytically inactive mutant thereof markedly inhibited both the anchorage-independent growth in vitro of NIH 3T3 cells that overexpress c-Myc as well as tumor formation by these cells in nude mice. These findings indicate that the targeted destruction of c-Myc by an artificial E3 may represent an effective therapeutic strategy for certain human malignancies. ©2005 American Association for Cancer Research.
CITATION STYLE
Hatakeyama, S., Watanabe, M., Fujii, Y., & Nakayama, K. I. (2005). Targeted destruction of c-Myc by an engineered ubiquitin ligase suppresses cell transformation and tumor formation. Cancer Research, 65(17), 7874–7879. https://doi.org/10.1158/0008-5472.CAN-05-1581
Mendeley helps you to discover research relevant for your work.