Single-pixel imaging (SPI) utilizes a second-order correlation of structured illumination light field and a single-pixel detector to form images. As the single-pixel detector provides no spatial resolution, a structured illumination light field generated by devices such as a spatial light modulator substitutes the role of array camera to retrieve pixel-wise spatial information. Due to its unique imaging modality, SPI has certain advantages. Meanwhile, its counterintuitive configuration and reciprocity relation to traditional array cameras have been studied to understand its fundamental principle. According to previous studies, the non-spatial detection property makes it possible for SPI to resist scattering in the detection part. In this work, we study the influence of an obstacle aperture in the detection part of SPI. We notice that such an obstacle aperture can restrict the field-of-view (FOV) of SPI, which can be diminished by a scattering process. We investigate these properties with experiment results and analysis under geometry optics. We believe that our study will be helpful in understanding the counterintuitive configuration of SPI and its reciprocity to traditional imaging.
CITATION STYLE
Li, P., Zhao, H., Jiang, W., Zhang, Z., & Sun, B. (2022). A Single-Pixel Imaging Scheme with Obstacle Detection. Photonics, 9(4). https://doi.org/10.3390/photonics9040253
Mendeley helps you to discover research relevant for your work.