Because the surface-to-volume ratio of quasi-two-dimensional materials is extremely high, understanding their surface characteristics is crucial for practically controlling their intrinsic properties and fabricating p-type and n-type layered semiconductors. Van der Waals crystals are expected to have an inert surface because of the absence of dangling bonds. However, here we show that the surface of high-quality synthesized molybdenum disulfide (MoS2) is a major n-doping source. The surface electron concentration of MoS2 is nearly four orders of magnitude higher than that of its inner bulk. Substantial thickness-dependent conductivity in MoS2 nanoflakes was observed. The transfer length method suggested the current transport in MoS2 following a two-dimensional behavior rather than the conventional three-dimensional mode. Scanning tunneling microscopy and angle-resolved photoemission spectroscopy measurements confirmed the presence of surface electron accumulation in this layered material. Notably, the in situ-cleaved surface exhibited a nearly intrinsic state without electron accumulation.
CITATION STYLE
Siao, M. D., Shen, W. C., Chen, R. S., Chang, Z. W., Shih, M. C., Chiu, Y. P., & Cheng, C. M. (2018). Two-dimensional electronic transport and surface electron accumulation in MoS2. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-03824-6
Mendeley helps you to discover research relevant for your work.