Regional deposition of submicrometer aerosol in the human respiratory system determined at 1-s time resolution of particle size distribution measurements

22Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

Submicrometer aerosol size number distributions have been measured in downtown Rome with 1 s time resolution. From these data, the particle deposition in the human respiratory system has been assessed for infants, children and adults under different exercise levels. The estimates are reported as size segregated percentages and as total particle numbers deposited. The greatest percentages of particles are deposited in the alveolar interstitial region. Deposited doses, expressed per unit body weight or per unit alveolar surface area, indicate that children and infants are more at risk than adults. Following vehicle exhausts, nucleation particle concentrations increase within a few seconds and decrease in the time scale of tens of seconds. In accordance with traffic cycles, such particles are very common during the day, and decrease at night, when accumulation mode particles are more prevalent. As a consequence, the exposure scenario, in proximity to traffic, may be represented by a sequence of short-term peak exposures. The appraisal of such brief exposures depends on the time resolution of measurements, being underestimated if aerosol measurements are performed with resolutions on the time scale of minutes. The health relevance of such exposure patterns needs to be investigated, and the relevant measurement averaging time should also be defined. © Taiwan Association for Aerosol Research.

Cite

CITATION STYLE

APA

Avino, P., Lopez, F., & Manigrasso, M. (2013). Regional deposition of submicrometer aerosol in the human respiratory system determined at 1-s time resolution of particle size distribution measurements. Aerosol and Air Quality Research, 13(6), 1702–1711. https://doi.org/10.4209/aaqr.2013.06.0189

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free