Ecological developmental genetics is the study of how ecologically significant traits originate in the genome and how the allelic combinations responsible are maintained in populations and species. Plant development involves a continuous feedback between growth and environment and the success of individual genotype x environment interactions determines the passage of alleles to the next generation: the adaptive recursion. Outbreeding plants contain a large amount of genetic variation, mostly in the form of single nucleotide polymorphisms (SNPs). One of the challenges of eco-devo is to distinguish neutral SNPs from those with ecological consequences. The complete genome sequence of Populus trichocarpa Torr. & A. Gray will be a significant aid in this endeavour. Occurring from California to Alaska, this is the first ecologically 'keystone' species to be sequenced. It has a rich natural history and is an obligate outbreeder. The individual sequenced, Nisqually-1, appears to be heterozygous on average about every 100 bp over the c. 500 million bp of the genome. Overlaid on this within-individual variation is some ecologically based between-individual genotypic variation evident across the distribution of the species. The synthesis of information from genomics and ecology is now in prospect. This 'ecomolecular synthesis' is likely to provide a rich insight into the genomic basis of plant adaptation. © New Phytologist (2005).
CITATION STYLE
Cronk, Q. C. B. (2005, April). Plant eco-devo: The potential of poplar as a model organism. New Phytologist. https://doi.org/10.1111/j.1469-8137.2005.01369.x
Mendeley helps you to discover research relevant for your work.