We identify a novel activity of the RarA (also MgsA) protein of Escherichia coli, demonstrating that this protein functions at DNA ends to generate flaps. A AAA+ ATPase in the clamp loader clade, RarA protein is part of a highly conserved family of DNA metabolism proteins. We demonstrate that RarA binds to double-stranded DNA in its ATP-bound state and single-stranded DNA in its apo state. RarA ATPase activity is stimulated by single-stranded DNA gaps and double-stranded DNA ends. At these double-stranded DNA ends, RarA couples the energy of ATP binding and hydrolysis to separating the strands of duplex DNA, creating flaps. We hypothesize that the creation of a flap at the site of a leading strand discontinuity could, in principle, allow DnaB and the associated replisome to continue DNA synthesis without impediment, with leading strand re-priming by DnaG. Replication forks could thus be rescued in a manner that does not involve replisome disassembly or reassembly, albeit with loss of one of the two chromosomal products of a replication cycle.
CITATION STYLE
Stanage, T. H., Page, A. N., & Cox, M. M. (2017). DNA flap creation by the RarA/MgsA protein of Escherichia coli. Nucleic Acids Research, 45(5), 2724–2735. https://doi.org/10.1093/nar/gkw1322
Mendeley helps you to discover research relevant for your work.