Performance and Optimization of Commercial Solar PV and PTC Plants

  • et al.
N/ACitations
Citations of this article
16Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Installation of solar PV arrays at utility scale is gaining popularity nowadays because of the significant reduction in the cost of components as well as the global push towards clean energy. Solar PV plants along with Parabolic Trough Collector Solar thermal plants has the highest potential among the available Renewable Energy (RE) technologies existing in the world. The objective of this paper is to optimize the performance of commercial Solar PV and PTC power plant for a potential location and hence to arrive on a most feasible configuration for the site. A representative site located in the Abudhabi region of UAE considered for the study. This paper also details on the annual performance of the proposed plant along with its technical aspects. PVSYST 6.7.7 and SAM software is used to design the optimal size and its specifications of a 100MW PV grid connected system at Abu Dhabi (UAE) region. The design and arrangements of the system verified using simulation results. The annual energy generated from the designed utility-scale solar PV plant from PVSYST 6.7.7 calculated as 161198MWh/year with a performance ratio (PR) of 74.8% per year where as for PTC it has calculated as 157152MWh/year by using SAM. The STC (Standard Testing Condition) for the specification of PV modules are normalized operating conditions when testing the module. Design parameters such as module orientation, array yield, reference yield, final yield, global horizontal irradiation (GHI), and ambient temperature and loss factors evaluated. To evaluate the economic feasibility of proposed plant, the levelized cost of electricity (LCOE) is determined as $0.04404/kwh for Solar PV and as $0.01533/kwh for PTC, which is used to calculate lifecycle cost and energy production.

Cite

CITATION STYLE

APA

Baseer*, M. A. … Saduni, I. A. (2020). Performance and Optimization of Commercial Solar PV and PTC Plants. International Journal of Recent Technology and Engineering (IJRTE), 8(5), 1703–1714. https://doi.org/10.35940/ijrte.e6247.018520

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free