Micro-Meteorological Conditions for Snow Melt

  • Kuhn M
N/ACitations
Citations of this article
59Readers
Mendeley users who have this article in their library.

Abstract

The energy budget of a snow or ice surface is determined by atmospheric variables like solar and atmospheric long-wave radiation, air temperature, and humidity; the transfer of energy from the free atmosphere to the surface depends on the stability of the atmospheric boundary layer, where vertical profiles of wind speed and temperature determine stability, and on surface conditions like surface temperature (and thus surface humidity), roughness, and albedo. This paper investigates the conditions exactly at the onset or the end of melting using air temperature, humidity, and as the radiation term the sum of global and reflected short-wave plus downward long-wave radiation. For the turbulent exchange in the boundary layer, examples are computed with a transfer coefficient of 18.5 W m −2 K −1 which corresponds to the average over the ablation period on an Alpine glacier. Ways to estimate the transfer coefficient for various degrees of stability are indicated in the Appendix. It appears from such calculations that snow may melt at air temperatures as low as –10 ° C and may stay frozen at +10 ° C.

Cite

CITATION STYLE

APA

Kuhn, M. (1987). Micro-Meteorological Conditions for Snow Melt. Journal of Glaciology, 33(113), 24–26. https://doi.org/10.3189/s002214300000530x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free