The presence of acidic compounds as naphthenic acids in crude oil causes several problems for the petroleum industry, including corrosion in both upstream and downstream production processes. Based on this scenario, the main objective of this work was to investigate the removal of the acidic compound from two Brazilian heavy oils by adsorption processes using six potential adsorbents: powdered shale, activated carbon, bentonite, silica gel, powdered sandstone and powdered wood. These raw materials were previously characterized by conventional and surface analysis techniques, which show that they offer a good surface area and thermal stability. To evaluate the removal efficiency at the molecular level, the crude oil samples and the filtered oils were analyzed by negative electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry [ESI (-) FTICR MS]. The O2 class, which is related to the relatively high acidity of the samples, was the most abundant in both crude oil samples, moreover, this class was more retained by adsorbents. Silica gel, activated carbon and bentonite were the best adsorbents of acidic compounds from the tested oils, in agreement with their markedly higher surface area and porous volume. Additionally, a chromatographic analysis was performed and showed no changes in the oil profile.
CITATION STYLE
Abib, G. A. P., Martins, L. L., DE ARAUJO, L. L. G. C., Isidorio, T. V., Pudenzi, M. A., Santos, V. H., & DA CRUZ, G. F. (2020). Assessing raw materials as potential adsorbents to remove acidic compounds from brazilian crude oils by esi (-) ft-icr ms. Anais Da Academia Brasileira de Ciencias, 92(3), 1–21. https://doi.org/10.1590/0001-3765202020200214
Mendeley helps you to discover research relevant for your work.