The plant bug, Nesidiocoris tenuis (Hemiptera: Miridae), is one of the most thermophilous dicyphines in agroecosystems and is widely distributed in China. Little is known regarding the genetic structure of N. tenuis and the effect of historical climatic fluctuations on N. tenuis populations. We analyzed partial sequences of three mitochondrial protein-coding genes (COI, ND2 and CytB) and nuclear genes (5.8S, ITS2 and 28S) for 516 specimens collected from 37 localities across China. Analyses of the combined mitochondrial dataset indicated that the Southwestern China group (SWC) was significantly differentiated from the remaining populations, other Chinese group (OC). Asymmetric migration and high level of gene flow across a long distance within the OC group was detected. The long-distance dispersal of N. tenuis might be affected by air currents and human interference. Both the neutrality tests and mismatch distributions revealed the occurrence of historical population expansion. Bayesian skyline plot analyses with two different substitution rates indicated that N. tenuis might follow the post-LGM (the Last Glacial Maximum) expansion pattern for temperate species. Pleistocene climatic fluctuation, complicated topography and anthropogenic factors, along with other ecological factors (e.g. temperature and air current) might have accounted for the current population structure of N. tenuis.
CITATION STYLE
Xun, H., Li, H., Li, S., Wei, S., Zhang, L., Song, F., … Cai, W. (2016). Population genetic structure and post-LGM expansion of the plant bug Nesidiocoris tenuis (Hemiptera: Miridae) in China. Scientific Reports, 6. https://doi.org/10.1038/srep26755
Mendeley helps you to discover research relevant for your work.