Modulation of ERG channels by XE991

28Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In neuronal tissue, KCNQ2-5 channels conduct the physiologically important M-current. In some neurones, the M-current may in addition be conducted partly by ERG potassium channels, which have widely overlapping expression with the KCNQ channel subunits. XE991 and linopiridine are known to be standard KCNQ potassium channel blockers. These compounds have been used in many different tissues as specific pharmacological tools to discern native currents conducted by KCNQ channels from other potassium currents. In this article, we demonstrate that ERG1-2 channels are also reversibly inhibited by XE991 in the micromolar range (EC50 107 μM for ERG1). The effect has been characterized in Xenopus laevis oocytes expressing ERG1-2 and in the mammalian HEK293 cell line stably expressing ERG1 channels. The IC50 values for block of KCNQ channels by XE991 range 1-65 μM. In conclusion, great care should be taken when choosing the concentration of XE991 to use for experiments on native potassium channels or animal studies in order to be able to conclude on selective KCNQ channel-mediated effects. © 2007 The Authors.

Cite

CITATION STYLE

APA

Elmedyb, P., Calloe, K., Schmitt, N., Hansen, R. S., Grunnet, M., & Olesen, S. P. (2007). Modulation of ERG channels by XE991. Basic and Clinical Pharmacology and Toxicology, 100(5), 316–322. https://doi.org/10.1111/j.1742-7843.2007.00048.x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free