The Curse of Class Imbalance and Conflicting Metrics with Machine Learning for Side-channel Evaluations

  • Picek S
  • Heuser A
  • Jovic A
  • et al.
N/ACitations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

We concentrate on machine learning techniques used for profiled sidechannel analysis in the presence of imbalanced data. Such scenarios are realistic and often occurring, for instance in the Hamming weight or Hamming distance leakage models. In order to deal with the imbalanced data, we use various balancing techniques and we show that most of them help in mounting successful attacks when the data is highly imbalanced. Especially, the results with the SMOTE technique are encouraging, since we observe some scenarios where it reduces the number of necessary measurements more than 8 times. Next, we provide extensive results on comparison of machine learning and side-channel metrics, where we show that machine learning metrics (and especially accuracy as the most often used one) can be extremely deceptive. This finding opens a need to revisit the previous works and their results in order to properly assess the performance of machine learning in side-channel analysis.

Cite

CITATION STYLE

APA

Picek, S., Heuser, A., Jovic, A., Bhasin, S., & Regazzoni, F. (2018). The Curse of Class Imbalance and Conflicting Metrics with Machine Learning for Side-channel Evaluations. IACR Transactions on Cryptographic Hardware and Embedded Systems, 209–237. https://doi.org/10.46586/tches.v2019.i1.209-237

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free