Previous studies have proved that cross-lingual knowledge distillation can significantly improve the performance of pre-trained models for cross-lingual similarity matching tasks. However, the student model needs to be large in this operation. Otherwise, its performance will drop sharply, thus making it impractical to be deployed to memory-limited devices. To address this issue, we delve into cross-lingual knowledge distillation and propose a multistage distillation framework for constructing a small-size but high-performance cross-lingual model. In our framework, contrastive learning, bottleneck, and parameter recurrent strategies are combined to prevent performance from being compromised during the compression process. The experimental results demonstrate that our method can compress the size of XLM-R and MiniLM by more than 50%, while the performance is only reduced by about 1%.
CITATION STYLE
Ding, K., Liu, W., Fang, Y., Zhao, Z., Ju, Q., Yang, X., … Sun, N. (2022). Multi-stage Distillation Framework for Cross-Lingual Semantic Similarity Matching. In Findings of the Association for Computational Linguistics: NAACL 2022 - Findings (pp. 2171–2181). Association for Computational Linguistics (ACL). https://doi.org/10.18653/v1/2022.findings-naacl.167
Mendeley helps you to discover research relevant for your work.