Raman scattering and infrared (IR) absorption spectra of enantiopure (R)-propylene carbonate ((R)PC) and racemic propylene carbonate (PC) were recorded at room temperature, 25 °C, in benzene (Bz) solution and in the pure liquid state to investigate the presence of dimers and other higher order intermolecular associations. (R)PC and PC both demonstrated a strong C=O stretching vibrational band. The band exhibited changes in its shape and resonance wavenumber highly dependent on the concentrations of PCs, whereas a difference between the chirality of (R)PC and PC had little influence. In an extremely dilute condition, doubly split bands were observed at 1807 and 1820 cm-1 in both Raman and IR spectra, which are assigned to the characteristic bands of isolated monomeric PCs. An additional band appeared at 1795 cm-1 in a dilute to concentrated regime, and its magnitude strengthened with increasing concentrations accompanied with slight increasing in the magnitude of 1807 cm-1 band in Raman spectra, while an increase in the magnitude of 1807 cm-1 band was clearly greater than that of 1795 cm-1 band in IR spectra. The spectrum changes at 1795 and 1807 cm-1 were attributed to characteristics of anti-parallel dimer formation of PCs caused by strong dipole-dipole interactions between C=O groups. Moreover, another additional signal was clearly observed at 1780-1790 cm-1 in a concentrated regime, and became the primary signal in the pure liquid state with slight increasing in the intensity of 1795 cm-1 band in Raman spectra. On the other hand, in IR spectra the observed increasing of 1780-1790 cm-1 band was much less than that of 1795 cm-1 band. These newly found spectrum changes in the concentrated regime are attributed to the formation of anti-parallel tetramers of PCs based on the characteristics of band selection rule found in Raman and IR spectra. Equilibrium constants for the anti-parallel dimer (KD) and tetramer formation (KT) of PCs in Bz solution and in the pure liquid state were also determined using the Raman and IR data assuming chemical processes: 4PC → 2(PC)2 → (PC)4.
CITATION STYLE
Tagawa, A., Numata, T., & Shikata, T. (2017). Anti-parallel dimer and tetramer formation of propylene carbonate. AIP Advances, 7(9). https://doi.org/10.1063/1.5002118
Mendeley helps you to discover research relevant for your work.